RAG and AI Search Course

Master the art and science of Retrieval-Augmented Generation (RAG) and AI-powered search systems. Learn to build intelligent knowledge systems that combine the power.
  • Foundations of RAG and Search
  • RAG Architecture and Implementation
  • Advanced Search Technologies
  • Advanced RAG Patterns
  • Production RAG Systems

50000 +

Students Enrolled

4.7

Ratings

16 Weeks

Duration

Our Alumni Work at Top Companies

Image 1Image 2Image 3Image 4Image 5
Image 6Image 7Image 8Image 9Image 10Image 11

RAG & AI Search Course Curriculum

It stretches your mind, think better and create even better.

FOUNDATIONS OF RAG AND SEARCH
Module 1

    Topics:

  • 0.1 Programming and ML Foundations

  • Week 1: Python and Deep Learning Basics

  • Python for RAG Systems

  • Advanced Python Programming

  • Async Programming for I/O

  • Data Structures and Algorithms

  • Memory Management

  • Performance Optimization

  • Machine Learning Essentials

  • Supervised Learning Basics

  • Neural Network Fundamentals

  • Gradient Descent and Backpropagation

  • Overfitting and Regularization

  • Model Evaluation Metrics

  • NLP Fundamentals

  • Text Processing and Tokenization

  • Word Embeddings (Word2Vec, GloVe)

  • Language Models Basics

  • Sequence Processing

  • Text Classification

  • Vector Mathematics

  • Vector Spaces

  • Cosine Similarity

  • Euclidean Distance

  • Dot Product

  • Dimensionality Reduction (PCA, t-SNE)

  • 0.2 LLMs and Search Foundations

  • Week 2: Core Technologies

  • Large Language Models

  • Transformer Architecture Basics

  • Attention Mechanisms

  • Pre-trained Models Overview

  • Prompt Engineering Fundamentals

  • API Integration (OpenAI, Anthropic)

  • Information Retrieval Basics

  • Boolean Retrieval

  • TF-IDF

  • BM25 Algorithm

  • Inverted Indexes

  • Query Processing

  • Database Fundamentals

  • SQL Basics

  • NoSQL Concepts

  • Database Indexing

  • Query Optimization

  • ACID Properties

  • Development Environment

  • VS Code Setup

  • Jupyter Notebooks

  • Git Version Control

  • Docker Basics

  • Cloud Platform Basics

  • Lab Project

  • Build a basic search engine with TF-IDF and implement simple question-answering

Module 2

    Topics:

  • 1.1 RAG Fundamentals

  • Week 1: Core Concepts

  • What is RAG?

  • RAG vs Fine-tuning

  • When to Use RAG

  • Benefits and Limitations

  • Use Cases and Applications

  • Industry Adoption

  • RAG Architecture Overview

  • Data Ingestion Layer

  • Indexing and Storage

  • Retrieval Mechanisms

  • Generation Component

  • Orchestration Layer

  • Core Components

  • Document Processors

  • Embedding Models

  • Vector Stores

  • Retrieval Strategies

  • LLM Integration

  • RAG Workflow

  • Query Understanding

  • Document Retrieval

  • Context Formation

  • Answer Generation

  • Response Synthesis

  • Types of RAG

  • Simple/Naive RAG

  • Advanced RAG

  • Modular RAG

  • Hybrid RAG

  • Agentic RAG

  • 1.2 Embeddings and Vector Representations

  • Week 2: Understanding Embeddings

  • Embedding Fundamentals

  • What are Embeddings?

  • Semantic Similarity

  • Vector Dimensions

  • Distance Metrics

  • Embedding Properties

  • Text Embedding Models

  • Sentence Transformers

  • OpenAI Embeddings

  • Cohere Embeddings

  • Instructor Models

  • BGE Models

  • Embedding Techniques

  • Dense Embeddings

  • Sparse Embeddings

  • Hybrid Embeddings

  • Cross-Encoders

  • Bi-Encoders

  • Advanced Concepts

  • Embedding Fine-tuning

  • Domain Adaptation

  • Multilingual Embeddings

  • Multimodal Embeddings

  • Compression Techniques

  • Quality and Evaluation

  • Embedding Quality Metrics

  • Semantic Similarity Tests

  • Retrieval Benchmarks

  • A/B Testing

  • Performance Analysis

  • Project

  • Build a semantic search system using different embedding models

Module 3

    Topics:

  • 2.1 Document Ingestion

  • Week 1: Data Processing Pipeline

  • Document Types and Parsing

  • PDF Processing (PyPDF, PDFPlumber)

  • HTML/Web Scraping

  • Office Documents (DOCX, XLSX)

  • Markdown and Plain Text

  • Structured Data (JSON, XML)

  • Text Extraction Techniques

  • OCR for Scanned Documents

  • Table Extraction

  • Image Caption Extraction

  • Metadata Preservation

  • Layout Analysis

  • Data Cleaning

  • Text Normalization

  • Noise Removal

  • Deduplication

  • Language Detection

  • Encoding Issues

  • Preprocessing Strategies

  • Sentence Segmentation

  • Paragraph Detection

  • Section Identification

  • Header/Footer Removal

  • Reference Resolution

  • 2.2 Chunking Strategies

  • Week 2: Optimal Chunking

  • Chunking Methods

  • Fixed-Size Chunking

  • Sentence-Based Chunking

  • Paragraph-Based Chunking

  • Semantic Chunking

  • Recursive Chunking

  • Advanced Chunking

  • Sliding Window Approach

  • Context-Aware Chunking

  • Hierarchical Chunking

  • Document Structure Chunking

  • Topic-Based Chunking

  • Chunk Optimization

  • Optimal Chunk Size

  • Overlap Strategies

  • Chunk Boundaries

  • Context Preservation

  • Metadata Attachment

  • Special Considerations

  • Code Chunking

  • Table Chunking

  • Multi-Column Documents

  • Cross-Reference Handling

  • Multi-Document Chunking

  • Quality Assurance

  • Chunk Coherence

  • Information Completeness

  • Retrieval Testing

  • Edge Case Handling

  • Performance Impact

  • Lab

  • Implement and compare different chunking strategies

RAG ARCHITECTURE AND IMPLEMENTATION
Module 1

    Topics:

  • 3.1 Vector Database Technologies

  • Week 1: Vector Storage Systems

  • Vector Database Overview

  • Why Vector Databases?

  • CRUD Operations

  • Indexing Mechanisms

  • Query Processing

  • Scalability Considerations

  • Popular Vector Databases

  • Pinecone Architecture

  • Weaviate Features

  • Qdrant Capabilities

  • Milvus/Zilliz

  • ChromaDB

  • Open Source Solutions

  • FAISS (Facebook AI)

  • Annoy (Spotify)

  • HNSW Implementation

  • ScaNN (Google)

  • Vespa

  • Database Features

  • Filtering and Metadata

  • Hybrid Search Support

  • Multi-Tenancy

  • Backup and Recovery

  • Security Features

  • Performance Optimization

  • Index Types (IVF, HNSW, LSH)

  • Quantization Methods

  • Caching Strategies

  • Batch Operations

  • Hardware Acceleration

  • 3.2 Indexing Strategies

  • Week 2: Advanced Indexing

  • Index Types

  • Flat Index

  • IVF (Inverted File)

  • HNSW (Hierarchical NSW)

  • LSH (Locality Sensitive Hashing)

  • Product Quantization

  • Hybrid Indexing

  • Dense + Sparse Vectors

  • Keyword + Semantic

  • Hierarchical Indexes

  • Multi-Modal Indexes

  • Graph-Enhanced Indexes

  • Index Management

  • Index Building

  • Incremental Updates

  • Index Versioning

  • Reindexing Strategies

  • Index Optimization

  • Scalability

  • Distributed Indexing

  • Sharding Strategies

  • Replication

  • Load Balancing

  • Horizontal Scaling

  • Production Considerations

  • Index Size Management

  • Memory vs Disk Trade-offs

  • Query Latency

  • Throughput Optimization

  • Cost Management

  • Project

  • Build and optimize a vector database for large-scale document retrieval

Module 2

    Topics:

  • 4.1 Basic Retrieval Methods

  • Week 1: Core Retrieval

  • Similarity Search

  • k-NN Search

  • Approximate NN Search

  • Range Queries

  • Threshold-Based Retrieval

  • Diversified Search

  • Ranking Algorithms

  • Cosine Similarity

  • Dot Product Scoring

  • Euclidean Distance

  • Manhattan Distance

  • Custom Scoring Functions

  • Query Processing

  • Query Embedding

  • Query Expansion

  • Query Rewriting

  • Multi-Query Strategy

  • Query Decomposition

  • Filtering and Constraints

  • Metadata Filtering

  • Date Range Filtering

  • Category Constraints

  • Access Control

  • Custom Filters

  • 4.2 Advanced Retrieval

  • Week 2: Sophisticated Techniques

  • Hybrid Search

  • Combining Dense and Sparse

  • BM25 + Vector Search

  • Reciprocal Rank Fusion

  • Weight Optimization

  • Cross-Encoder Reranking

  • Multi-Step Retrieval

  • Coarse-to-Fine Retrieval

  • Iterative Refinement

  • Chain-of-Retrieval

  • Recursive Retrieval

  • Hierarchical Search

  • Contextual Retrieval

  • Context-Aware Embeddings

  • Session-Based Retrieval

  • Personalized Search

  • Temporal Awareness

  • Location-Based Retrieval

  • Reranking Strategies

  • Cross-Encoder Reranking

  • MMR (Maximum Marginal Relevance)

  • DPR (Dense Passage Retrieval)

  • ColBERT Reranking

  • Learning to Rank

  • Lab

  • Implement and benchmark different retrieval strategies

Module 3

    Topics:

  • 5.1 Building RAG Systems

  • Week 1: Core Implementation

  • RAG Pipeline Architecture

  • Component Design

  • Data Flow Management

  • Error Handling

  • Async Processing

  • Pipeline Orchestration

  • LangChain for RAG

  • Document Loaders

  • Text Splitters

  • Vector Stores Integration

  • Retrieval Chains

  • QA Chains

  • LlamaIndex Implementation

  • Index Types

  • Query Engines

  • Response Synthesis

  • Node Postprocessors

  • Storage Management

  • Custom RAG Development

  • From Scratch Implementation

  • Component Integration

  • State Management

  • Caching Layers

  • Performance Optimization

  • Context Management

  • Context Window Limits

  • Context Compression

  • Relevant Context Selection

  • Context Ordering

  • Token Management

  • 5.2 Answer Generation

  • Week 2: Response Synthesis

  • Generation Strategies

  • Single Document Answering

  • Multi-Document Synthesis

  • Abstractive Summarization

  • Extractive Answering

  • Hybrid Generation

  • Prompt Engineering for RAG

  • System Prompts

  • Context Injection

  • Citation Instructions

  • Format Control

  • Error Handling Prompts

  • Quality Enhancement

  • Answer Verification

  • Fact Checking

  • Hallucination Prevention

  • Confidence Scoring

  • Source Attribution

  • Response Formatting

  • Structured Outputs

  • Citation Addition

  • Highlighting Key Points

  • Multi-Format Support

  • Streaming Responses

  • Conversation Management

  • Multi-Turn RAG

  • Context Carryover

  • Memory Systems

  • Session Management

  • User Personalization

  • Project

  • Build a complete RAG system from scratch

ADVANCED SEARCH TECHNOLOGIES
Module 1

    Topics:

  • 6.1 Semantic Search

  • Week 1: Deep Semantic Understanding

  • Semantic Search Principles

  • Intent Understanding

  • Query Analysis

  • Semantic Matching

  • Concept Extraction

  • Entity Recognition

  • Query Understanding

  • Query Classification

  • Intent Detection

  • Entity Extraction

  • Query Disambiguation

  • Spell Correction

  • Semantic Expansion

  • Synonym Expansion

  • Concept Expansion

  • Related Terms

  • Knowledge Graph Integration

  • Ontology Mapping

  • Cross-Lingual Search

  • Multilingual Embeddings

  • Translation Strategies

  • Language Detection

  • Cross-Lingual Retrieval

  • Zero-Shot Transfer

  • 6.2 Neural Information Retrieval

  • Week 2: Advanced Neural Methods

  • Dense Retrieval Models

  • DPR (Dense Passage Retrieval)

  • ANCE (Approximate Nearest Neighbor)

  • RocketQA

  • SBERT Fine-tuning

  • Domain Adaptation

  • Learned Sparse Retrieval

  • SPLADE

  • DeepImpact

  • DocT5Query

  • Term Importance Learning

  • Sparse-Dense Hybrids

  • Neural Ranking Models

  • BERT for Ranking

  • T5 Ranking

  • MonoBERT

  • DuoBERT

  • Cross-Encoders

  • Training Strategies

  • Contrastive Learning

  • Hard Negative Mining

  • Knowledge Distillation

  • Curriculum Learning

  • Multi-Task Learning

  • Lab

  • Implement and fine-tune neural search models

Module 2

    Topics:

  • 7.1 Hybrid Search Systems

  • Combining Search Methods

  • Lexical + Semantic

  • Dense + Sparse

  • Global + Local

  • Exact + Fuzzy

  • Structured + Unstructured

  • Fusion Strategies

  • Score Normalization

  • Rank Fusion

  • Weight Learning

  • Reciprocal Rank Fusion

  • Machine Learning Fusion

  • Optimization Techniques

  • Parameter Tuning

  • A/B Testing

  • Online Learning

  • Bandits for Search

  • Reinforcement Learning

  • 7.2 Federated and Distributed Search

  • Distributed Architecture

  • Federated Search Design

  • Index Distribution

  • Query Routing

  • Result Aggregation

  • Load Balancing

  • Multi-Source Integration

  • Database Integration

  • API Integration

  • File System Search

  • Cloud Storage Search

  • Real-time Data Streams

  • Project

  • Build a hybrid search system with multiple data sources

ADVANCED RAG PATTERNS
Module 1

    Topics:

  • 8.1 Modular and Agentic RAG

  • Modular RAG

  • Component Modularity

  • Plug-and-Play Modules

  • Module Composition

  • Interface Design

  • Module Optimization

  • Agentic RAG

  • Agent-Based Retrieval

  • Tool Use in RAG

  • Planning and Reasoning

  • Multi-Step Retrieval

  • Self-Improving RAG

  • Adaptive RAG

  • Query Routing

  • Dynamic Pipeline Selection

  • Confidence-Based Routing

  • Fallback Mechanisms

  • Performance Monitoring

  • Self-RAG

  • Self-Reflection

  • Retrieval Necessity Detection

  • Answer Quality Assessment

  • Iterative Improvement

  • Verification Loops

  • 8.2 Specialized RAG Patterns

  • Conversational RAG

  • Dialogue Context Management

  • Turn-Taking Strategies

  • Memory Integration

  • Persona Consistency

  • Clarification Handling

  • Code RAG

  • Code Understanding

  • Repository Indexing

  • API Documentation RAG

  • Code Example Retrieval

  • Debugging Assistance

  • Graph RAG

  • Knowledge Graph Integration

  • Graph Traversal

  • Entity Relationship Extraction

  • Graph-Enhanced Retrieval

  • Reasoning over Graphs

  • Multimodal RAG

  • Image-Text RAG

  • Video RAG

  • Audio RAG

  • Document Layout RAG

  • Cross-Modal Retrieval

  • Lab

  • Implement advanced RAG patterns

Module 2

    Topics:

  • 9.1 Knowledge Graph Integration

  • Knowledge Graph Basics

  • Graph Data Models

  • RDF and SPARQL

  • Property Graphs

  • Graph Databases (Neo4j)

  • Ontology Design

  • Entity and Relation Extraction

  • Named Entity Recognition

  • Relation Extraction

  • Coreference Resolution

  • Entity Linking

  • Knowledge Base Population

  • Graph Construction

  • Automatic Graph Building

  • Semi-Structured Data

  • Schema Design

  • Graph Validation

  • Quality Assurance

  • Graph-Based Retrieval

  • Subgraph Matching

  • Path Finding

  • Graph Embeddings

  • Neighborhood Aggregation

  • Graph Neural Networks

  • 9.2 Structured Data RAG

  • Table Understanding

  • Table Parsing

  • Schema Extraction

  • Cell Understanding

  • Table Embeddings

  • Table QA

  • SQL Generation

  • Text-to-SQL

  • Natural Language Interfaces

  • Query Validation

  • Result Interpretation

  • Error Handling

  • Structured + Unstructured

  • Hybrid Retrieval

  • Join Operations

  • Data Fusion

  • Consistency Checking

  • Cross-Reference Resolution

  • Time-Series and Streaming

  • Temporal RAG

  • Real-time Updates

  • Stream Processing

  • Event-Driven RAG

  • Historical Context

  • Project

  • Build a knowledge graph-enhanced RAG system

PRODUCTION RAG SYSTEMS
Module 1

    Topics:

  • 10.1 Performance Optimization

  • Latency Optimization

  • Query Optimization

  • Index Optimization

  • Caching Strategies

  • Prefetching

  • Parallel Processing

  • Throughput Scaling

  • Batch Processing

  • Request Queuing

  • Load Distribution

  • Horizontal Scaling

  • Vertical Scaling

  • Memory Management

  • Embedding Compression

  • Index Compression

  • Cache Management

  • Memory Mapping

  • Garbage Collection

  • Cost Optimization

  • Resource Allocation

  • Compute Optimization

  • Storage Optimization

  • API Cost Management

  • Infrastructure Choices

  • 10.2 Quality Optimization

  • Retrieval Quality

  • Relevance Tuning

  • Precision/Recall Balance

  • Ranking Optimization

  • Diversity Enhancement

  • Freshness Scoring

  • Generation Quality

  • Prompt Optimization

  • Context Selection

  • Answer Quality Metrics

  • Hallucination Reduction

  • Factuality Enhancement

  • End-to-End Optimization

  • Pipeline Tuning

  • Component Balancing

  • Feedback Loops

  • Online Learning

  • Continuous Improvement

  • A/B Testing

  • Experiment Design

  • Metric Selection

  • Statistical Analysis

  • Result Interpretation

  • Rollout Strategies

  • Lab

  • Optimize a RAG system for production performance

Module 2

    Topics:

  • 11.1 RAG Evaluation

  • Evaluation Frameworks

  • RAGAS Framework

  • Custom Metrics

  • Human Evaluation

  • Automated Testing

  • Benchmark Suites

  • Retrieval Metrics

  • Precision@K

  • Recall@K

  • MRR (Mean Reciprocal Rank)

  • MAP (Mean Average Precision)

  • NDCG

  • Generation Metrics

  • Faithfulness

  • Answer Relevance

  • Context Precision

  • Context Recall

  • Answer Similarity

  • 11.2 Testing and Monitoring

  • Testing Strategies

  • Unit Testing

  • Integration Testing

  • End-to-End Testing

  • Load Testing

  • Stress Testing

  • Production Monitoring

  • Performance Dashboards

  • Quality Monitoring

  • Error Tracking

  • Usage Analytics

  • Cost Monitoring

  • Project

  • Implement comprehensive evaluation for a RAG system

Module 3

    Topics:

  • 12.1 Production Architecture

  • System Architecture

  • Microservices Design

  • API Gateway

  • Service Mesh

  • Message Queues

  • Event Streaming

  • Deployment Strategies

  • Containerization (Docker)

  • Orchestration (Kubernetes)

  • Serverless Deployment

  • Edge Deployment

  • Multi-Region Setup

  • High Availability

  • Redundancy Design

  • Failover Mechanisms

  • Disaster Recovery

  • Backup Strategies

  • Health Checks

  • Security and Compliance

  • Authentication/Authorization

  • Data Encryption

  • Access Control

  • Audit Logging

  • Compliance (GDPR, HIPAA)

  • 12.2 Enterprise Features

  • Multi-Tenancy

  • Tenant Isolation

  • Resource Allocation

  • Data Segregation

  • Custom Configurations

  • Billing Integration

  • Administration

  • User Management

  • Content Management

  • Configuration Management

  • Version Control

  • Rollback Procedures

  • Integration

  • Enterprise Systems

  • SSO Integration

  • API Management

  • Webhook Support

  • Event Integration

  • Operations

  • DevOps Practices

  • CI/CD Pipelines

  • Infrastructure as Code

  • Monitoring and Alerting

  • Incident Response

  • Final Project

  • Deploy a production-ready enterprise RAG system

TOOlS & PLATFORMS

LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid

Our Trending Projects

Autonomous Customer Service System

Build a complete multi-agent customer service system with: - Natural language understanding - Intent recognition and routing - Knowledge base integration - Escalation handling - Sentiment analysis - Performance monitoring

Autonomous Customer Service System

Intelligent Research Assistant

Develop an AI research agent capable of: - Literature review automation - Data collection and analysis - Report generation - Citation management - Collaborative research - Quality validation

Intelligent Research Assistant

Enterprise Process Automation

Create an agent system for business process automation: - Workflow orchestration - Document processing - Decision automation - Integration with enterprise systems - Compliance checking - Performance optimization

Enterprise Process Automation

IT Engineers who got Trained from Digital Lync

Engineers all around the world reach for Digital Lync by choice.

Why Digital Lync

100000+

LEARNERS

10000+

BATCHES

10+

YEARS

24/7

SUPPORT

Learn.

Build.

Get Job.

100000+ uplifted through our hybrid classroom & online training, enriched by real-time projects and job support.

Our Locations

Come and chat with us about your goals over a cup of coffee.

Hyderabad, Telangana

2nd Floor, Hitech City Rd, Above Domino's, opp. Cyber Towers, Jai Hind Enclave, Hyderabad, Telangana.

Bengaluru, Karnataka

3rd Floor, Site No 1&2 Saroj Square, Whitefield Main Road, Munnekollal Village Post, Marathahalli, Bengaluru, Karnataka.