MLOps & LLMOps Course

Master the art of operationalizing machine learning and large language models in production environments. Learn to build robust ML pipelines, implement CI/CD for AI
  • Foundations of MLOps
  • ML Pipeline Engineering
  • Model Deployment and Serving
  • LLMOps - Operationalizing LLMs
  • Production Operations and Governance

50000 +

Students Enrolled

4.7

Ratings

18 Weeks

Duration

Our Alumni Work at Top Companies

Image 1Image 2Image 3Image 4Image 5
Image 6Image 7Image 8Image 9Image 10Image 11

ML & LLM Ops Course Curriculum

It stretches your mind, think better and create even better.

FOUNDATIONS OF MLOPS
Module 1

    Topics:

  • 0.1 Programming and DevOps Foundations

  • Week 1: Core Technical Skills

  • Python for MLOps

  • Advanced Python Programming

  • Object-Oriented Design

  • Async Programming

  • Error Handling and Logging

  • Package Management

  • Testing with Pytest

  • Software Engineering Practices

  • Clean Code Principles

  • Design Patterns

  • SOLID Principles

  • Code Review Practices

  • Documentation Standards

  • Agile Methodologies

  • Linux and Command Line

  • Shell Scripting (Bash)

  • Process Management

  • File Systems

  • Networking Basics

  • System Administration

  • Automation Scripts

  • Version Control

  • Git Advanced Features

  • Branching Strategies

  • Git Workflows (GitFlow, GitHub Flow)

  • Merge Conflict Resolution

  • Git Hooks

  • Collaborative Development

  • 0.2 DevOps and Cloud Foundations

  • Week 2: Infrastructure Basics

  • DevOps Fundamentals

  • DevOps Culture and Practices

  • CI/CD Concepts

  • Infrastructure as Code

  • Configuration Management

  • Containerization Basics

  • Monitoring and Logging

  • Cloud Computing Essentials

  • Cloud Service Models (IaaS, PaaS, SaaS)

  • AWS Fundamentals

  • Azure Basics

  • GCP Overview

  • Cloud Security Basics

  • Cost Management

  • Containerization

  • Docker Fundamentals

  • Container Images

  • Docker Compose

  • Container Registries

  • Container Security

  • Best Practices

  • Basic Machine Learning

  • ML Pipeline Overview

  • Model Training Basics

  • Evaluation Metrics

  • Overfitting and Validation

  • Model Selection

  • Deployment Considerations

  • Lab Project

  • Set up a basic ML development environment with Docker and implement a simple CI/CD pipeline

Module 2

    Topics:

  • 1.1 MLOps Fundamentals

  • Week 1: Core Concepts

  • What is MLOps?

  • MLOps vs DevOps

  • MLOps vs Data Engineering

  • MLOps Maturity Models

  • Benefits and ROI

  • Industry Adoption

  • Case Studies

  • MLOps Lifecycle

  • Problem Definition

  • Data Management

  • Model Development

  • Model Deployment

  • Monitoring and Maintenance

  • Feedback Loops

  • Key Challenges in ML Production

  • Data Drift

  • Model Drift

  • Technical Debt

  • Reproducibility

  • Scalability

  • Governance

  • MLOps Principles

  • Automation

  • Continuous Integration

  • Continuous Delivery

  • Continuous Training

  • Continuous Monitoring

  • Collaboration

  • MLOps Team Structure

  • Roles and Responsibilities

  • Data Scientists vs ML Engineers

  • Platform Teams

  • Cross-functional Collaboration

  • Skills Matrix

  • Communication Patterns

  • 1.2 MLOps Tools and Platforms

  • Week 2: Technology Landscape

  • MLOps Platforms

  • MLflow Overview

  • Kubeflow Components

  • Azure ML Platform

  • AWS SageMaker

  • Google Vertex AI

  • Databricks MLOps

  • Experiment Tracking

  • Weights & Biases

  • Neptune.ai

  • Comet ML

  • TensorBoard

  • DVC (Data Version Control)

  • Sacred

  • Model Registries

  • Model Versioning

  • Model Metadata

  • Model Lineage

  • Approval Workflows

  • Model Governance

  • Access Control

  • Orchestration Tools

  • Apache Airflow

  • Prefect

  • Dagster

  • Argo Workflows

  • Luigi

  • Kedro

  • Infrastructure Tools

  • Terraform

  • Ansible

  • Kubernetes

  • Helm

  • Cloud Formation

  • Pulumi

  • Project

  • Design an MLOps architecture for a real-world use case

Module 3

    Topics:

  • 2.1 Compute and Storage

  • Week 1: Infrastructure Management

  • Compute Resources

  • CPU vs GPU vs TPU

  • Cluster Management

  • Resource Allocation

  • Auto-scaling

  • Spot/Preemptible Instances

  • Cost Optimization

  • Storage Solutions

  • Object Storage (S3, GCS, Azure Blob)

  • File Systems (NFS, EFS)

  • Block Storage

  • Data Lakes

  • Feature Stores

  • Model Stores

  • Networking

  • VPC and Subnets

  • Load Balancers

  • API Gateways

  • Service Mesh

  • CDN Integration

  • Security Groups

  • Infrastructure as Code

  • Terraform Fundamentals

  • Resource Provisioning

  • State Management

  • Modules and Reusability

  • Multi-Environment Setup

  • GitOps Practices

  • 2.2 Kubernetes for ML

  • Week 2: Container Orchestration

  • Kubernetes Fundamentals

  • Pods and Deployments

  • Services and Ingress

  • ConfigMaps and Secrets

  • Persistent Volumes

  • Namespaces

  • RBAC

  • Kubernetes for ML Workloads

  • GPU Scheduling

  • Resource Quotas

  • Job and CronJob

  • Distributed Training

  • Model Serving

  • Autoscaling (HPA/VPA)

  • Kubeflow Deep Dive

  • Kubeflow Pipelines

  • Katib (Hyperparameter Tuning)

  • KFServing/KServe

  • Notebooks

  • Training Operators

  • Metadata Management

  • Advanced Topics

  • Custom Resources (CRDs)

  • Operators for ML

  • Service Mesh (Istio)

  • Multi-cluster Setup

  • Disaster Recovery

  • Security Hardening

  • Lab

  • Deploy an ML pipeline on Kubernetes using Kubeflow

ML PIPELINE ENGINEERING
Module 1

    Topics:

  • 3.1 Data Engineering for ML

  • Week 1: Data Pipelines

  • Data Pipeline Architecture

  • Batch vs Streaming

  • ETL vs ELT

  • Data Pipeline Patterns

  • Error Handling

  • Data Quality Checks

  • Pipeline Monitoring

  • Data Processing Tools

  • Apache Spark

  • Apache Beam

  • Pandas at Scale

  • Dask

  • Ray

  • Polars

  • Data Versioning

  • DVC (Data Version Control)

  • Git LFS

  • Delta Lake

  • Data Lineage

  • Reproducibility

  • Time Travel

  • Feature Engineering Pipelines

  • Feature Extraction

  • Feature Transformation

  • Feature Selection

  • Automated Feature Engineering

  • Feature Validation

  • Feature Monitoring

  • 3.2 Feature Stores

  • Week 2: Feature Management

  • Feature Store Architecture

  • Online vs Offline Features

  • Feature Serving

  • Feature Discovery

  • Feature Versioning

  • Feature Governance

  • Access Control

  • Feature Store Solutions

  • Feast

  • Tecton

  • AWS Feature Store

  • Databricks Feature Store

  • Hopsworks

  • Custom Implementation

  • Feature Operations

  • Feature Ingestion

  • Feature Computation

  • Feature Serving Patterns

  • Point-in-Time Correctness

  • Feature Freshness

  • Feature Quality

  • Integration Patterns

  • Training Integration

  • Serving Integration

  • Batch Predictions

  • Real-time Predictions

  • Feature Pipelines

  • Monitoring Integration

  • Project

  • Build an end-to-end data pipeline with feature store integration

Module 2

    Topics:

  • 4.1 Experiment Management

  • Week 1: Tracking and Reproducibility

  • Experiment Tracking

  • Metrics Logging

  • Parameter Tracking

  • Artifact Management

  • Visualization

  • Comparison Tools

  • Collaboration Features

  • MLflow Deep Dive

  • Tracking Server Setup

  • Experiments and Runs

  • Model Registry

  • Projects

  • Models

  • Plugins and Extensions

  • Reproducibility

  • Environment Management

  • Dependency Tracking

  • Random Seed Management

  • Data Versioning

  • Code Versioning

  • Configuration Management

  • Hyperparameter Optimization

  • Grid Search

  • Random Search

  • Bayesian Optimization

  • Hyperband

  • Population-Based Training

  • Neural Architecture Search

  • 4.2 Training Pipelines

  • Week 2: Automated Training

  • Pipeline Orchestration

  • Pipeline Design Patterns

  • DAG Construction

  • Task Dependencies

  • Error Recovery

  • Retry Logic

  • Alerting

  • Distributed Training

  • Data Parallelism

  • Model Parallelism

  • Horovod

  • PyTorch Distributed

  • TensorFlow Distribution

  • Ray Train

  • Continuous Training

  • Trigger Mechanisms

  • Incremental Training

  • Transfer Learning

  • Active Learning

  • Online Learning

  • Model Updates

  • Training Optimization

  • Resource Optimization

  • Cost Management

  • Training Time Reduction

  • Caching Strategies

  • Warm Starting

  • Early Stopping

  • Lab

  • Implement an automated training pipeline with experiment tracking

Module 3

    Topics:

  • 5.1 Continuous Integration for ML

  • Week 1: Testing and Validation

  • Code Quality

  • Linting and Formatting

  • Type Checking

  • Code Coverage

  • Static Analysis

  • Security Scanning

  • Documentation Generation

  • ML-Specific Testing

  • Data Validation Tests

  • Feature Validation

  • Model Validation Tests

  • Integration Tests

  • Performance Tests

  • A/B Testing Framework

  • Testing Strategies

  • Unit Testing for ML

  • Component Testing

  • Contract Testing

  • Shadow Testing

  • Canary Testing

  • Chaos Engineering

  • Automated Validation

  • Model Quality Gates

  • Data Quality Gates

  • Performance Thresholds

  • Business Metrics Validation

  • Compliance Checks

  • Security Validation

  • 5.2 Continuous Delivery for ML

  • Week 2: Deployment Automation

  • CI/CD Pipelines

  • GitHub Actions for ML

  • GitLab CI/CD

  • Jenkins Pipelines

  • Azure DevOps

  • CircleCI

  • ArgoCD

  • Deployment Strategies

  • Blue-Green Deployment

  • Canary Deployment

  • Rolling Updates

  • Feature Flags

  • Dark Launches

  • Gradual Rollouts

  • Model Packaging

  • Model Serialization

  • Container Images

  • Model Artifacts

  • Dependencies Management

  • Version Tagging

  • Registry Management

  • Release Management

  • Release Planning

  • Approval Workflows

  • Rollback Strategies

  • Change Management

  • Documentation Updates

  • Communication Plans

  • Project

  • Build a complete CI/CD pipeline for an ML project

MODEL DEPLOYMENT AND SERVING
Module 1

    Topics:

  • 6.1 Deployment Patterns

  • Week 1: Architecture Patterns

  • Deployment Architectures

  • Batch Inference

  • Real-time Serving

  • Near Real-time

  • Edge Deployment

  • Embedded Models

  • Federated Deployment

  • Serving Patterns

  • REST APIs

  • gRPC Services

  • GraphQL

  • WebSockets

  • Message Queues

  • Event Streaming

  • Model Formats

  • ONNX

  • TensorFlow SavedModel

  • PyTorch TorchScript

  • PMML

  • Core ML

  • TensorFlow Lite

  • Containerization for ML

  • Docker Best Practices

  • Multi-stage Builds

  • Size Optimization

  • Security Hardening

  • Base Images

  • Layer Caching

  • 6.2 Scalable Model Serving

  • Week 2: Production Serving

  • Model Serving Frameworks

  • TensorFlow Serving

  • TorchServe

  • ONNX Runtime

  • Triton Inference Server

  • BentoML

  • Seldon Core

  • Scaling Strategies

  • Horizontal Scaling

  • Vertical Scaling

  • Auto-scaling Policies

  • Load Balancing

  • Request Routing

  • Circuit Breakers

  • Performance Optimization

  • Model Optimization

  • Batching Strategies

  • Caching

  • Hardware Acceleration

  • Quantization

  • Pruning

  • Multi-Model Serving

  • Model Routing

  • Model Versioning

  • A/B Testing

  • Multi-Armed Bandits

  • Ensemble Serving

  • Model Composition

  • Lab

  • Deploy and scale multiple model versions in production

Module 2

    Topics:

  • 7.1 ML Monitoring

  • Week 1: Monitoring Systems

  • Metrics and KPIs

  • Model Performance Metrics

  • Business Metrics

  • System Metrics

  • Data Quality Metrics

  • User Engagement Metrics

  • Cost Metrics

  • Monitoring Stack

  • Prometheus

  • Grafana

  • ELK Stack

  • Datadog

  • New Relic

  • Custom Solutions

  • Data and Model Drift

  • Distribution Drift

  • Concept Drift

  • Feature Drift

  • Label Drift

  • Detection Methods

  • Alerting Strategies

  • Performance Monitoring

  • Latency Tracking

  • Throughput Monitoring

  • Error Rates

  • Resource Utilization

  • Queue Depths

  • Cache Hit Rates

  • 7.2 Observability and Debugging

  • Week 2: Production Insights

  • Logging and Tracing

  • Structured Logging

  • Distributed Tracing

  • Correlation IDs

  • Log Aggregation

  • Log Analysis

  • Trace Analysis

  • Model Explainability

  • SHAP Values

  • LIME

  • Feature Importance

  • Counterfactual Explanations

  • Model Cards

  • Bias Detection

  • Alerting and Incident Response

  • Alert Design

  • Alert Fatigue

  • Escalation Policies

  • Runbooks

  • Post-Mortems

  • Root Cause Analysis

  • Feedback Loops

  • User Feedback Collection

  • Model Performance Feedback

  • Data Quality Feedback

  • Continuous Improvement

  • Retraining Triggers

  • Model Updates

  • Project

  • Implement comprehensive monitoring for a production ML system

LLMOPS - OPERATIONALIZING LLMS
Module 1

    Topics:

  • 8.1 LLM-Specific Challenges

  • Week 1: Unique Aspects of LLMOps

  • LLMOps vs Traditional MLOps

  • Scale Differences

  • Cost Considerations

  • Latency Requirements

  • Memory Constraints

  • Quality Challenges

  • Safety Concerns

  • LLM Lifecycle Management

  • Model Selection

  • Fine-tuning Pipelines

  • Prompt Engineering

  • Evaluation Strategies

  • Deployment Patterns

  • Update Cycles

  • Infrastructure for LLMs

  • GPU Clusters

  • Memory Requirements

  • Network Bandwidth

  • Storage Needs

  • Cost Optimization

  • Vendor Lock-in

  • LLM Development Workflow

  • Experimentation

  • Prompt Development

  • Fine-tuning

  • Evaluation

  • Deployment

  • Monitoring

  • 8.2 Prompt Engineering Operations

  • Week 2: Prompt Management

  • Prompt Management Systems

  • Prompt Versioning

  • Prompt Templates

  • Prompt Testing

  • Prompt Registry

  • Access Control

  • Audit Trails

  • Prompt Optimization

  • A/B Testing Prompts

  • Prompt Performance Metrics

  • Cost per Prompt

  • Latency Optimization

  • Quality Metrics

  • User Feedback

  • Prompt CI/CD

  • Prompt Validation

  • Automated Testing

  • Deployment Pipelines

  • Rollback Mechanisms

  • Progressive Rollouts

  • Feature Flags

  • Dynamic Prompting

  • Context Injection

  • Personalization

  • Template Systems

  • Variable Management

  • Chain Management

  • Error Handling

  • Lab

  • Build a prompt management system with versioning and testing

Module 2

    Topics:

  • 9.1 Fine-tuning Pipelines

  • Week 1: Automated Fine-tuning

  • Data Preparation

  • Dataset Curation

  • Data Quality Checks

  • Format Conversion

  • Train/Val/Test Splits

  • Data Augmentation

  • Synthetic Data

  • Fine-tuning Infrastructure

  • Multi-GPU Setup

  • Distributed Training

  • Memory Optimization

  • Checkpointing

  • Resume Training

  • Cost Management

  • Fine-tuning Strategies

  • Full Fine-tuning

  • LoRA/QLoRA

  • Prefix Tuning

  • Adapter Layers

  • Instruction Tuning

  • RLHF Pipelines

  • Experiment Management

  • Hyperparameter Tracking

  • Loss Curves

  • Validation Metrics

  • Model Comparison

  • Best Model Selection

  • Artifact Storage

  • 9.2 LLM Training Operations

  • Week 2: Large-Scale Training

  • Distributed Training for LLMs

  • Data Parallelism

  • Model Parallelism

  • Pipeline Parallelism

  • ZeRO Optimization

  • FSDP

  • DeepSpeed

  • Training Monitoring

  • Loss Tracking

  • Gradient Statistics

  • Memory Usage

  • Training Speed

  • Checkpoint Management

  • Failure Recovery

  • Quality Assurance

  • Evaluation Suites

  • Benchmark Testing

  • Human Evaluation

  • Safety Testing

  • Bias Detection

  • Output Validation

  • Continuous Training

  • Incremental Updates

  • Online Learning

  • Feedback Integration

  • Model Merging

  • Version Management

  • Rollout Strategies

  • Project

  • Implement an automated fine-tuning pipeline for LLMs

Module 10

    Topics:

  • 10.1 LLM Serving Infrastructure

  • Week 1: Deployment Strategies

  • Serving Frameworks

  • vLLM

  • Text Generation Inference (TGI)

  • TensorRT-LLM

  • llama.cpp

  • Triton Inference Server

  • Custom Solutions

  • Optimization Techniques

  • Quantization (INT8, INT4)

  • Flash Attention

  • KV Cache Optimization

  • Continuous Batching

  • Speculative Decoding

  • Model Compression

  • Deployment Patterns

  • API Endpoints

  • Streaming Responses

  • Batch Processing

  • Edge Deployment

  • Serverless LLMs

  • Multi-Model Serving

  • Cost Optimization

  • Token Management

  • Request Batching

  • Caching Strategies

  • Model Selection

  • Spot Instance Usage

  • Reserved Capacity

  • 10.2 RAG and Agent Operations

  • Week 2: Complex LLM Systems

  • RAG Operations

  • Vector DB Management

  • Index Updates

  • Embedding Management

  • Retrieval Monitoring

  • Context Management

  • Citation Tracking

  • Agent Systems Ops

  • Tool Management

  • Memory Systems

  • State Management

  • Action Monitoring

  • Error Recovery

  • Performance Tracking

  • Orchestration

  • Chain Management

  • Workflow Orchestration

  • Error Handling

  • Retry Logic

  • Timeout Management

  • Fallback Strategies

  • Production Considerations

  • Rate Limiting

  • Authentication

  • Usage Tracking

  • Billing Integration

  • Compliance

  • Audit Logging

  • Lab

  • Deploy a production RAG system with monitoring

PRODUCTION OPERATIONS AND GOVERNANCE
Module 1

    Topics:

  • 11.1 ML Security

  • Security Threats

  • Model Stealing

  • Data Poisoning

  • Adversarial Attacks

  • Prompt Injection

  • Data Leakage

  • Model Inversion

  • Security Measures

  • Access Control

  • Encryption

  • Secure APIs

  • Network Security

  • Container Security

  • Secrets Management

  • LLM Security

  • Prompt Injection Defense

  • Output Validation

  • Content Filtering

  • Rate Limiting

  • Token Security

  • API Key Management

  • 11.2 Compliance and Governance

  • Regulatory Compliance

  • GDPR

  • CCPA

  • HIPAA

  • SOC 2

  • ISO 27001

  • Industry Standards

  • Model Governance

  • Model Risk Management

  • Approval Workflows

  • Documentation Requirements

  • Audit Trails

  • Version Control

  • Change Management

  • Ethical AI

  • Bias Detection

  • Fairness Metrics

  • Transparency

  • Explainability

  • Accountability

  • Human Oversight

  • Project

  • Implement security and compliance measures for ML systems

Module 2

    Topics:

  • 12.1 MLOps at Scale

  • Week 1: Enterprise Architecture

  • Platform Engineering

  • Platform Design

  • Multi-Tenancy

  • Resource Management

  • Service Catalog

  • Self-Service Capabilities

  • Developer Experience

  • Team Collaboration

  • Role-Based Access

  • Project Management

  • Knowledge Sharing

  • Documentation

  • Training Programs

  • Best Practices

  • Cost Management

  • Budget Tracking

  • Resource Allocation

  • Chargeback Models

  • Optimization Strategies

  • Vendor Management

  • ROI Analysis

  • Integration Patterns

  • Enterprise Systems

  • Data Warehouses

  • BI Tools

  • CRM/ERP Integration

  • API Management

  • Event Streaming

  • 12.2 Advanced Topics

  • Week 2: Cutting-Edge Practices

  • Edge MLOps

  • Edge Deployment

  • Model Optimization

  • OTA Updates

  • Offline Capabilities

  • Resource Constraints

  • Monitoring

  • Federated Learning Ops

  • Distributed Training

  • Privacy Preservation

  • Model Aggregation

  • Client Management

  • Communication Protocols

  • Quality Assurance

  • AutoML Operations

  • AutoML Pipelines

  • Neural Architecture Search

  • Hyperparameter Optimization

  • Automated Feature Engineering

  • Model Selection

  • Deployment Automation

  • Green MLOps

  • Carbon Footprint

  • Energy Efficiency

  • Sustainable Practices

  • Green Computing

  • Optimization Strategies

  • Reporting

  • Final Project

  • Design and implement an enterprise MLOps platform

TOOlS & PLATFORMS

LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid

Our Trending Projects

Autonomous Customer Service System

Build a complete multi-agent customer service system with: - Natural language understanding - Intent recognition and routing - Knowledge base integration - Escalation handling - Sentiment analysis - Performance monitoring

Autonomous Customer Service System

Intelligent Research Assistant

Develop an AI research agent capable of: - Literature review automation - Data collection and analysis - Report generation - Citation management - Collaborative research - Quality validation

Intelligent Research Assistant

Enterprise Process Automation

Create an agent system for business process automation: - Workflow orchestration - Document processing - Decision automation - Integration with enterprise systems - Compliance checking - Performance optimization

Enterprise Process Automation

IT Engineers who got Trained from Digital Lync

Engineers all around the world reach for Digital Lync by choice.

Why Digital Lync

100000+

LEARNERS

10000+

BATCHES

10+

YEARS

24/7

SUPPORT

Learn.

Build.

Get Job.

100000+ uplifted through our hybrid classroom & online training, enriched by real-time projects and job support.

Our Locations

Come and chat with us about your goals over a cup of coffee.

Hyderabad, Telangana

2nd Floor, Hitech City Rd, Above Domino's, opp. Cyber Towers, Jai Hind Enclave, Hyderabad, Telangana.

Bengaluru, Karnataka

3rd Floor, Site No 1&2 Saroj Square, Whitefield Main Road, Munnekollal Village Post, Marathahalli, Bengaluru, Karnataka.