LLM Engineering Course

Master the complete engineering lifecycle of Large Language Models - from architecture design and training to optimization and production deployment.
  • Foundations of LLM Engineering
  • Building and Training LLMs
  • Fine-tuning and Adaptation
  • LLM Optimization and Inference
  • Production LLM Systems

50000 +

Students Enrolled

4.7

Ratings

18 Weeks

Duration

Our Alumni Work at Top Companies

Image 1Image 2Image 3Image 4Image 5
Image 6Image 7Image 8Image 9Image 10Image 11

LLM Engineering Course Curriculum

It stretches your mind, think better and create even better.

FOUNDATIONS OF LLM ENGINEERING
Module 1

    Topics:

  • Duration: 2 Weeks

  • 0.1 Mathematical and Programming Foundations

  • Week 1: Core Mathematics and Python

  • Linear Algebra for LLMs

  • Matrix Operations and Decomposition

  • Eigenvalues and Eigenvectors

  • Tensor Operations

  • Attention Matrix Mathematics

  • Dimensionality and Projections

  • Calculus and Optimization

  • Gradients and Backpropagation

  • Chain Rule in Deep Networks

  • Optimization Landscapes

  • Convergence Theory

  • Stochastic Optimization

  • Probability and Information Theory

  • Probability Distributions

  • Bayes’ Theorem

  • Entropy and Cross-Entropy

  • KL Divergence

  • Mutual Information

  • Advanced Python for LLMs

  • Object-Oriented Programming

  • Functional Programming

  • Async/Await Patterns

  • Memory Management

  • Performance Profiling

  • Debugging Large Systems

  • 0.2 Deep Learning and NLP Foundations

  • Week 2: Neural Networks and NLP

  • Deep Learning Essentials

  • Neural Network Architectures

  • Backpropagation Algorithm

  • Activation Functions

  • Regularization Techniques

  • Batch Normalization

  • Gradient Flow

  • Natural Language Processing

  • Tokenization Strategies

  • Word Embeddings (Word2Vec, GloVe)

  • Sequence Modeling Basics

  • Language Modeling Fundamentals

  • Evaluation Metrics

  • NLP Tasks Overview

  • PyTorch for LLMs

  • Tensor Operations

  • Autograd System

  • nn.Module Design

  • Custom Layers

  • Data Loading Pipeline

  • Distributed Features

  • Development Environment

  • GPU/TPU Setup

  • CUDA Programming Basics

  • Docker for ML

  • Experiment Tracking (W&B, MLflow)

  • Version Control for ML

  • Cloud Platforms

  • Lab Project

  • Implement a basic transformer from scratch in PyTorch

Module 2

    Topics:

  • Duration: 2 Weeks

  • 1.1 Attention Mechanisms

  • Week 1: From RNNs to Attention

  • Evolution of Sequence Models

  • RNN and LSTM Limitations

  • Seq2Seq Models

  • Attention Revolution

  • Transformer Breakthrough

  • Why Attention Works

  • Self-Attention Mechanism

  • Query, Key, Value Computation

  • Scaled Dot-Product Attention

  • Attention Score Calculation

  • Softmax and Normalization

  • Attention Patterns Analysis

  • Multi-Head Attention

  • Head Projection Matrices

  • Parallel Attention Computation

  • Head Concatenation

  • Output Projection

  • Why Multiple Heads Matter

  • Attention Variants

  • Cross-Attention

  • Causal Attention

  • Bidirectional Attention

  • Local Attention

  • Sliding Window Attention

  • Mathematical Deep Dive

  • Attention as Matrix Multiplication

  • Complexity Analysis O(n²)

  • Memory Requirements

  • Gradient Flow Through Attention

  • Numerical Stability

  • 1.2 Complete Transformer Architecture

  • Week 2: Building Blocks and Variants

  • Transformer Components

  • Input Embeddings

  • Positional Encodings

  • Layer Normalization

  • Feed-Forward Networks

  • Residual Connections

  • Output Layers

  • Positional Encoding Strategies

  • Sinusoidal Encodings

  • Learned Position Embeddings

  • Rotary Position Embeddings (RoPE)

  • ALiBi (Attention with Linear Biases)

  • Relative Position Encodings

  • Length Extrapolation

  • Architecture Variants

  • Encoder-Only (BERT-style)

  • Decoder-Only (GPT-style)

  • Encoder-Decoder (T5-style)

  • Prefix LM

  • UniLM Architecture

  • Implementation Details

  • Initialization Strategies

  • Gradient Checkpointing

  • Mixed Precision Training

  • Attention Masking

  • Padding Strategies

  • Project

  • Build a complete transformer model with configurable architecture

Module 3

    Topics:

  • Duration: 2 Weeks

  • 2.1 State-of-the-Art Models

  • Week 1: Commercial and Open Models

  • GPT Family Evolution

  • GPT-3 Architecture (175B)

  • GPT-3.5 Improvements

  • GPT-4 Multimodal Design

  • GPT-4 Turbo Optimizations

  • Context Length Scaling

  • Claude Architecture

  • Constitutional AI Design

  • Context Window (100K+)

  • Safety Mechanisms

  • Training Innovations

  • Performance Characteristics

  • Google Models

  • PaLM and PaLM 2

  • Gemini Architecture

  • Mixture of Experts in Gemini

  • Multimodal Integration

  • Efficiency Improvements

  • Open Source Revolution

  • LLaMA/LLaMA 2 Architecture

  • Mistral and Mixtral MoE

  • Falcon Design Choices

  • Qwen Technical Details

  • Yi and DeepSeek Models

  • 2.2 Architectural Innovations

  • Week 2: Cutting-Edge Techniques

  • Mixture of Experts (MoE)

  • Sparse Activation

  • Expert Routing

  • Load Balancing

  • Switch Transformers

  • Mixtral Implementation

  • Efficient Attention Mechanisms

  • Flash Attention v1/v2

  • Linear Attention

  • Performer Architecture

  • Reformer Techniques

  • Memory-Efficient Attention

  • Long Context Innovations

  • RoPE Scaling

  • YaRN Method

  • Positional Interpolation

  • Context Length Extension

  • Streaming Transformers

  • Model Scaling Strategies

  • Depth vs Width Scaling

  • Compound Scaling

  • Chinchilla Optimal

  • Training Compute Laws

  • Inference Compute Trade-offs

  • Lab: Implement and benchmark different attention mechanisms

BUILDING AND TRAINING LLMs
Module 1

    Topics:

  • Duration: 3 Weeks

  • 3.1 Data Engineering for LLMs

  • Week 1: Dataset Preparation

  • Data Collection

  • Web Crawling (Common Crawl)

  • Wikipedia and Books

  • Code Repositories

  • Scientific Papers

  • Multilingual Data

  • Domain-Specific Corpora

  • Data Processing Pipeline

  • Text Extraction

  • Deduplication Strategies

  • Quality Filtering

  • Language Detection

  • PII Removal

  • Format Standardization

  • Data Quality and Filtering

  • Perplexity Filtering

  • Repetition Detection

  • Toxicity Filtering

  • Domain Classification

  • Length Filtering

  • Statistical Analysis

  • Tokenization

  • BPE (Byte-Pair Encoding)

  • SentencePiece

  • WordPiece

  • Unigram Model

  • Custom Tokenizers

  • Multilingual Tokenization

  • Dataset Mixing

  • Domain Weighting

  • Upsampling Strategies

  • Curriculum Learning

  • Data Scheduling

  • Validation Set Creation

  • 3.2 Training Objectives and Losses

  • Week 2: Learning Strategies

  • Language Modeling Objectives

  • Causal Language Modeling (CLM)

  • Masked Language Modeling (MLM)

  • Prefix Language Modeling

  • Span Corruption (T5)

  • Fill-in-the-Middle (FIM)

  • UL2 Unified Framework

  • Loss Functions

  • Cross-Entropy Loss

  • Perplexity Calculation

  • Label Smoothing

  • Focal Loss

  • Contrastive Losses

  • Training Dynamics

  • Learning Rate Schedules

  • Warm-up Strategies

  • Cosine Annealing

  • Gradient Clipping

  • Weight Decay

  • Optimization Algorithms

  • AdamW Optimizer

  • LAMB Optimizer

  • Adafactor

  • 8-bit Optimizers

  • Sharpness-Aware Minimization

  • 3.3 Distributed Training

  • Week 3: Training at Scale

  • Parallelism Strategies

  • Data Parallelism (DDP)

  • Model Parallelism

  • Pipeline Parallelism

  • Tensor Parallelism

  • 3D Parallelism

  • Distributed Frameworks

  • PyTorch FSDP

  • DeepSpeed ZeRO

  • FairScale

  • Megatron-LM

  • JAX/Flax for TPUs

  • Memory Optimization

  • Gradient Checkpointing

  • CPU Offloading

  • Mixed Precision (FP16/BF16)

  • Gradient Accumulation

  • Activation Checkpointing

  • Training Infrastructure

  • Multi-GPU Setup

  • Multi-Node Training

  • NCCL Communication

  • InfiniBand Networks

  • Cloud Training (AWS, GCP, Azure)

  • Monitoring and Debugging

  • Loss Curves Analysis

  • Gradient Statistics

  • Training Instabilities

  • Checkpoint Management

  • Experiment Tracking

  • Project

  • Pre-train a small language model from scratch

Module 2

    Topics:

  • Duration: 2 Weeks

  • 4.1 Training Infrastructure

  • Week 1: Hardware and Systems

  • Hardware Considerations

  • GPU Selection (A100, H100, MI300)

  • TPU Architecture and Usage

  • Memory Requirements

  • Interconnect Bandwidth

  • Storage Systems

  • Cluster Management

  • SLURM Job Scheduling

  • Kubernetes for ML

  • Resource Allocation

  • Queue Management

  • Fault Tolerance

  • Data Infrastructure

  • High-Performance Storage

  • Data Loading Optimization

  • Streaming Datasets

  • Caching Strategies

  • Prefetching

  • Cost Optimization

  • Spot Instance Training

  • Preemptible VMs

  • Resource Utilization

  • Training Efficiency

  • Budget Management

  • 4.2 Engineering Best Practices

  • Week 2: Production Training

  • Code Organization

  • Modular Architecture

  • Configuration Management

  • Dependency Management

  • Testing Strategies

  • Documentation

  • Reproducibility

  • Seed Management

  • Deterministic Operations

  • Environment Versioning

  • Dataset Versioning

  • Result Validation

  • Continuous Training

  • Incremental Training

  • Online Learning

  • Model Updates

  • A/B Testing

  • Rollback Strategies

  • Team Collaboration

  • Code Review Practices

  • Experiment Sharing

  • Knowledge Transfer

  • Model Registry

  • Documentation Standards

  • Lab: Set up a distributed training pipeline

FINE-TUNING AND ADAPTATION
Module 1

    Topics:

  • Duration: 2 Weeks

  • 5.1 Full Fine-tuning

  • Week 1: Traditional Approaches

  • Fine-tuning Strategies

  • Task-Specific Fine-tuning

  • Multi-Task Learning

  • Sequential Fine-tuning

  • Continual Learning

  • Domain Adaptation

  • Dataset Preparation

  • Instruction Datasets

  • Task Formatting

  • Data Augmentation

  • Synthetic Data Generation

  • Quality Control

  • Training Considerations

  • Learning Rate Selection

  • Batch Size Effects

  • Epochs vs Steps

  • Early Stopping

  • Overfitting Prevention

  • Catastrophic Forgetting

  • Problem Analysis

  • Elastic Weight Consolidation

  • Progressive Neural Networks

  • Memory Replay

  • Regularization Techniques

  • 5.2 Parameter-Efficient Fine-tuning

  • Week 2: PEFT Methods

  • LoRA (Low-Rank Adaptation)

  • Mathematical Foundation

  • Rank Selection

  • Alpha Parameter

  • Dropout Strategies

  • LoRA Variants (QLoRA, LongLoRA)

  • Other PEFT Methods

  • Prefix Tuning

  • Prompt Tuning

  • Adapter Layers

  • IA³ (Infused Adapter)

  • BitFit

  • Advanced Techniques

  • LoRA Composition

  • Multi-LoRA Systems

  • Dynamic Rank Allocation

  • Task-Specific Adapters

  • Modular Fine-tuning

  • Efficiency Analysis

  • Memory Savings

  • Training Speed

  • Inference Overhead

  • Quality Trade-offs

  • Scaling Properties

  • Project: Implement and compare different PEFT methods

Module 2

    Topics:

  • Duration: 2 Weeks

  • 6.1 Instruction Tuning

  • Week 1: Creating Instruction-Following Models

  • Instruction Datasets

  • Dataset Collection

  • Instruction Templates

  • Task Diversity

  • Quality Metrics

  • Data Mixing Strategies

  • Training Methodology

  • Supervised Fine-tuning (SFT)

  • Instruction Formatting

  • System Prompts

  • Multi-Turn Dialogues

  • Chain-of-Thought Training

  • Popular Datasets

  • Alpaca Dataset

  • ShareGPT

  • OpenAssistant

  • Dolly

  • FLAN Collection

  • Evaluation

  • Instruction Following

  • Task Generalization

  • Zero-Shot Performance

  • Benchmark Suites

  • Human Evaluation

  • 6.2 Reinforcement Learning from Human Feedback

  • Week 2: RLHF Pipeline

  • RLHF Components

  • Reward Model Training

  • Policy Optimization

  • PPO Algorithm

  • Value Functions

  • KL Divergence Penalty

  • Reward Modeling

  • Preference Data Collection

  • Bradley-Terry Model

  • Ranking Losses

  • Reward Model Architecture

  • Calibration

  • Policy Optimization

  • PPO Implementation

  • Advantage Estimation

  • Clipping Strategies

  • Entropy Bonus

  • Training Stability

  • Alternative Approaches

  • DPO (Direct Preference Optimization)

  • RLAIF (RL from AI Feedback)

  • Constitutional AI

  • SLiC (Sequence Likelihood Calibration)

  • Rejection Sampling

  • Lab: Implement a complete RLHF pipeline

Module 3

    Topics:

  • Duration: 1 Week

  • 7.1 Domain Adaptation

  • Vertical Fine-tuning

  • Medical LLMs

  • Legal LLMs

  • Financial LLMs

  • Scientific LLMs

  • Code LLMs

  • Multilingual Adaptation

  • Cross-lingual Transfer

  • Language-Specific Tuning

  • Code-Switching

  • Translation Tasks

  • Cultural Adaptation

  • Multimodal Extensions

  • Vision-Language Models

  • Audio Integration

  • Document Understanding

  • Video Processing

  • Embodied AI

  • 7.2 Advanced Adaptation

  • Continual Learning

  • Lifelong Learning

  • Task Incremental Learning

  • Experience Replay

  • Dynamic Architecture

  • Knowledge Consolidation

  • Few-Shot Adaptation

  • In-Context Learning

  • Meta-Learning

  • Prompt Engineering

  • Demonstration Selection

  • Task Instructions

  • Project: Fine-tune an LLM for a specialized domain

LLM OPTIMIZATION AND INFERENCE
Module 1

    Topics:

  • Duration: 2 Weeks

  • 8.1 Quantization

  • Week 1: Reducing Model Size

  • Quantization Fundamentals

  • Float32 to Lower Precision

  • Symmetric vs Asymmetric

  • Per-Channel vs Per-Tensor

  • Dynamic vs Static

  • Quantization-Aware Training

  • Quantization Methods

  • INT8 Quantization

  • INT4 and Below

  • GPTQ Method

  • AWQ (Activation-aware)

  • SmoothQuant

  • Mixed Precision

  • FP16 Training and Inference

  • BF16 Advantages

  • Automatic Mixed Precision

  • Tensor Cores Utilization

  • Numerical Stability

  • Implementation

  • PyTorch Quantization

  • ONNX Quantization

  • TensorRT INT8

  • llama.cpp Quantization

  • bitsandbytes Library

  • 8.2 Model Compression

  • Week 2: Advanced Optimization

  • Pruning Techniques

  • Magnitude Pruning

  • Structured Pruning

  • Gradual Pruning

  • Lottery Ticket Hypothesis

  • Movement Pruning

  • Knowledge Distillation

  • Teacher-Student Setup

  • Distillation Loss

  • Temperature Scaling

  • Feature Matching

  • Progressive Distillation

  • Model Architecture Search

  • Neural Architecture Search

  • Efficient Architectures

  • Compound Scaling

  • Hardware-Aware Design

  • AutoML for LLMs

  • Compilation and Optimization

  • TorchScript

  • TensorRT

  • ONNX Runtime

  • Graph Optimization

  • Kernel Fusion

  • Lab: Optimize an LLM for edge deployment

Module 2

    Topics:

  • Duration: 2 Weeks

  • 9.1 Efficient Inference

  • Week 1: Speed Optimization

  • Attention Optimization

  • Flash Attention Implementation

  • PagedAttention (vLLM)

  • Multi-Query Attention

  • Grouped-Query Attention

  • Sparse Attention Patterns

  • KV Cache Management

  • Cache Structure

  • Memory Layout

  • Cache Compression

  • Sharing Strategies

  • Dynamic Allocation

  • Speculative Decoding

  • Draft Models

  • Verification Process

  • Acceptance Rates

  • Speed-Quality Trade-offs

  • Implementation Strategies

  • Batch Processing

  • Dynamic Batching

  • Continuous Batching

  • In-Flight Batching

  • Padding Strategies

  • Memory Management

  • 9.2 Serving Infrastructure

  • Week 2: Production Deployment

  • Serving Frameworks

  • vLLM Architecture

  • TGI (Text Generation Inference)

  • TensorRT-LLM

  • Triton Inference Server

  • Ray Serve

  • API Design

  • REST API Design

  • Streaming Responses

  • WebSocket Support

  • gRPC Services

  • GraphQL Integration

  • Scaling Strategies

  • Horizontal Scaling

  • Model Replication

  • Load Balancing

  • Request Routing

  • Auto-scaling

  • Performance Monitoring

  • Latency Metrics

  • Throughput Analysis

  • GPU Utilization

  • Memory Monitoring

  • Cost Tracking

  • Project

  • Build a high-performance LLM serving system

PRODUCTION LLM SYSTEMS
Module 1

    Topics:

  • Duration: 2 Weeks

  • 10.1 Application Architectures

  • Week 1: Building LLM Apps

  • RAG Systems

  • Architecture Design

  • Retrieval Strategies

  • Context Management

  • Answer Generation

  • Citation Systems

  • Agent Systems

  • Tool Integration

  • Memory Systems

  • Planning Modules

  • Action Execution

  • Multi-Agent Coordination

  • Conversational AI

  • Dialogue Management

  • Context Tracking

  • Persona Consistency

  • Turn-Taking

  • Error Recovery

  • Code Generation Systems

  • IDE Integration

  • Context Collection

  • Code Completion

  • Refactoring Support

  • Test Generation

  • 10.2 Advanced Applications

  • Week 2: Complex Systems

  • Hybrid Systems

  • LLM + Traditional ML

  • Rule-Based Integration

  • Knowledge Graph Integration

  • Database Integration

  • External API Calls

  • Streaming Applications

  • Real-time Processing

  • Event-Driven Architecture

  • Stream Processing

  • WebSocket Implementation

  • Server-Sent Events

  • Multimodal Applications

  • Image + Text

  • Audio + Text

  • Video Understanding

  • Document Processing

  • Cross-Modal Search

  • Enterprise Integration

  • Authentication/Authorization

  • Audit Logging

  • Compliance Features

  • Data Privacy

  • Security Measures

  • Lab

  • Build a production LLM application

Module 2

    Topics:

  • Duration: 1 Week

  • 11.1 Model Evaluation

  • Automatic Evaluation

  • Perplexity Measurement

  • BLEU, ROUGE Scores

  • BERTScore

  • Task-Specific Metrics

  • Benchmark Suites (MMLU, HellaSwag)

  • Human Evaluation

  • Evaluation Protocols

  • Inter-Rater Agreement

  • Bias Mitigation

  • Cost Management

  • Platform Design

  • A/B Testing

  • Experiment Design

  • Statistical Significance

  • Metric Selection

  • User Segmentation

  • Result Analysis

  • 11.2 Quality Assurance

  • Testing Strategies

  • Unit Testing for LLMs

  • Integration Testing

  • Regression Testing

  • Performance Testing

  • Security Testing

  • Safety Evaluation

  • Toxicity Detection

  • Bias Measurement

  • Hallucination Detection

  • Factuality Checking

  • Adversarial Testing

  • Project

  • Implement comprehensive evaluation for an LLM system

Module 3

    Topics:

  • Duration: 1 Week

  • 12.1 Cutting-Edge Research

  • Emerging Architectures

  • Mamba and State Space Models

  • RWKV Architecture

  • Retentive Networks

  • Hyena Hierarchy

  • Linear Transformers

  • Training Innovations

  • Flash Attention 3

  • Ring Attention

  • Blockwise Parallel

  • Sequence Parallelism

  • Pipeline Bubbles Reduction

  • Efficiency Research

  • 1-bit LLMs

  • Extreme Quantization

  • Sparse Models

  • Conditional Computation

  • Early Exit Strategies

  • 12.2 Future Directions

  • AGI Progress

  • Reasoning Capabilities

  • Planning and Agency

  • Tool Use Evolution

  • Multi-step Reasoning

  • Self-Improvement

  • Technical Challenges

  • Hallucination Mitigation

  • Consistency Improvement

  • Context Length Scaling

  • Multimodal Integration

  • Embodied Intelligence

  • Lab

  • Implement a research paper’s novel technique

TOOlS & PLATFORMS

LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid

Our Trending Projects

Autonomous Customer Service System

Build a complete multi-agent customer service system with: - Natural language understanding - Intent recognition and routing - Knowledge base integration - Escalation handling - Sentiment analysis - Performance monitoring

Autonomous Customer Service System

Intelligent Research Assistant

Develop an AI research agent capable of: - Literature review automation - Data collection and analysis - Report generation - Citation management - Collaborative research - Quality validation

Intelligent Research Assistant

Enterprise Process Automation

Create an agent system for business process automation: - Workflow orchestration - Document processing - Decision automation - Integration with enterprise systems - Compliance checking - Performance optimization

Enterprise Process Automation

IT Engineers who got Trained from Digital Lync

Engineers all around the world reach for Digital Lync by choice.

Why Digital Lync

100000+

LEARNERS

10000+

BATCHES

10+

YEARS

24/7

SUPPORT

Learn.

Build.

Get Job.

100000+ uplifted through our hybrid classroom & online training, enriched by real-time projects and job support.

Our Locations

Come and chat with us about your goals over a cup of coffee.

Hyderabad, Telangana

2nd Floor, Hitech City Rd, Above Domino's, opp. Cyber Towers, Jai Hind Enclave, Hyderabad, Telangana.

Bengaluru, Karnataka

3rd Floor, Site No 1&2 Saroj Square, Whitefield Main Road, Munnekollal Village Post, Marathahalli, Bengaluru, Karnataka.