Generative Ai Course

Dive deep into the revolutionary world of Generative AI, from foundational concepts to cutting-edge applications.
  • Foundations of Generative AI
  • Large Language Models (LLMs)
  • Image and Vision Generation
  • Multimodal and Specialized Generation
  • Production GenAI Systems

50000 +

Students Enrolled

4.7

Ratings

20 Weeks

Duration

Our Alumni Work at Top Companies

Image 1Image 2Image 3Image 4Image 5
Image 6Image 7Image 8Image 9Image 10Image 11

Generative AI Course Curriculum

It stretches your mind, think better and create even better.

FOUNDATIONS OF GENERATIVE AI
Module 1

    Topics:

  • Duration: 2 Weeks

  • 0.1 Programming and Mathematics Foundations

  • Week 1: Python and Deep Learning Basics

  • Python Essentials

  • Python Programming Fundamentals

  • NumPy for Numerical Computing

  • Data Manipulation with Pandas

  • Visualization with Matplotlib/Seaborn

  • Object-Oriented Programming

  • Deep Learning Prerequisites

  • Neural Network Basics

  • Backpropagation Algorithm

  • Activation Functions

  • Loss Functions

  • Optimization Algorithms (SGD, Adam)

  • Development Environment

  • Jupyter Notebooks and Google Colab

  • Git and Version Control

  • Virtual Environments

  • GPU Setup and CUDA Basics

  • Package Management

  • Mathematics Essentials

  • Linear Algebra (Matrices, Vectors, Eigenvalues)

  • Calculus (Derivatives, Chain Rule, Gradients)

  • Probability and Statistics

  • Information Theory Basics

  • Optimization Theory

  • 0.2 Introduction to Deep Learning Frameworks

  • Week 2: PyTorch and TensorFlow

  • PyTorch Fundamentals

  • Tensors and Operations

  • Automatic Differentiation

  • Building Neural Networks

  • Training Loops

  • Model Saving and Loading

  • TensorFlow/Keras Basics

  • Sequential and Functional APIs

  • Custom Layers and Models

  • Training and Callbacks

  • TensorBoard Visualization

  • Model Deployment

  • Hugging Face Ecosystem

  • Transformers Library

  • Datasets Library

  • Tokenizers

  • Model Hub

  • Spaces and Gradio

  • Cloud Platforms for AI

  • Google Colab Pro

  • AWS SageMaker

  • Azure ML Studio

  • Paperspace Gradient

  • Lambda Labs

  • Lab Project: Build and train a basic neural network for text generation

Module 2

    Topics:

  • Duration: 2 Weeks

  • 1.1 Generative AI Landscape

  • Week 1: Fundamentals and History

  • What is Generative AI?

  • Generative vs. Discriminative Models

  • History and Evolution

  • Key Breakthroughs and Milestones

  • Current State of the Art

  • Future Directions

  • Types of Generative Models

  • Autoregressive Models

  • Variational Autoencoders (VAEs)

  • Generative Adversarial Networks (GANs)

  • Normalizing Flows

  • Diffusion Models

  • Transformer-based Models

  • Applications Overview

  • Text Generation and Chatbots

  • Image Synthesis and Art

  • Music and Audio Generation

  • Video Creation

  • Code Generation

  • Drug Discovery and Science

  • Mathematical Foundations

  • Probability Distributions

  • Maximum Likelihood Estimation

  • Bayesian Inference

  • Latent Variable Models

  • Sampling Methods

  • 1.2 Core Concepts and Theory

  • Week 2: Fundamental Techniques

  • Learning Paradigms

  • Unsupervised Learning

  • Self-Supervised Learning

  • Semi-Supervised Learning

  • Few-Shot Learning

  • Zero-Shot Learning

  • Generation Techniques

  • Sampling Strategies

  • Temperature and Top-k/Top-p

  • Beam Search

  • Nucleus Sampling

  • Constrained Generation

  • Evaluation Metrics

  • Perplexity

  • BLEU Score

  • FID Score

  • Inception Score

  • Human Evaluation

  • Task-Specific Metrics

  • Challenges in Generative AI

  • Mode Collapse

  • Training Instability

  • Evaluation Difficulties

  • Computational Requirements

  • Ethical Considerations

  • Project: Implement and compare different generative model architectures

Module 3

    Topics:

  • Duration: 2 Weeks

  • 2.1 Classical Generative Models

  • Week 1: VAEs and GANs

  • Variational Autoencoders (VAEs)

  • Encoder-Decoder Architecture

  • Latent Space Representation

  • Variational Inference

  • KL Divergence

  • Reparameterization Trick

  • Conditional VAEs

  • β-VAE and Disentanglement

  • Generative Adversarial Networks (GANs)

  • Generator and Discriminator

  • Adversarial Training

  • GAN Objective Functions

  • Mode Collapse Solutions

  • Wasserstein GAN

  • Progressive GAN

  • StyleGAN Architecture

  • Hybrid Models

  • VAE-GAN

  • Adversarial Autoencoders

  • BiGAN/ALI

  • CycleGAN

  • Domain Adaptation

  • Training Techniques

  • Stability Tricks

  • Spectral Normalization

  • Self-Attention

  • Progressive Training

  • Data Augmentation

  • 2.2 Modern Architectures

  • Week 2: Flows and Diffusion

  • Normalizing Flows

  • Flow-based Models

  • Change of Variables

  • Coupling Layers

  • Autoregressive Flows

  • Continuous Normalizing Flows

  • Diffusion Models

  • Forward and Reverse Process

  • Denoising Diffusion (DDPM)

  • Score-Based Models

  • DDIM Sampling

  • Guided Diffusion

  • Latent Diffusion Models

  • Energy-Based Models

  • Energy Functions

  • Contrastive Divergence

  • Score Matching

  • Langevin Dynamics

  • Applications

  • Comparison and Selection

  • Model Trade-offs

  • Quality vs. Speed

  • Memory Requirements

  • Use Case Matching

  • Hybrid Approaches

  • Lab: Build and train VAE, GAN, and Diffusion models

LARGE LANGUAGE MODELS
Module 1

    Topics:

  • Duration: 3 Weeks

  • 3.1 Transformer Deep Dive

  • Week 1: Architecture and Attention

  • Attention Mechanisms

  • Self-Attention Mathematics

  • Multi-Head Attention

  • Scaled Dot-Product Attention

  • Cross-Attention

  • Attention Patterns Visualization

  • Transformer Architecture

  • Encoder-Decoder Structure

  • Positional Encodings

  • Layer Normalization

  • Feed-Forward Networks

  • Residual Connections

  • Improvements and Variants

  • Sparse Attention (Reformer, Linformer)

  • Efficient Attention (Performer, Linear Attention)

  • Flash Attention

  • Multi-Query Attention

  • Grouped-Query Attention

  • Positional Encodings

  • Sinusoidal Encoding

  • Learned Embeddings

  • Rotary Position Embeddings (RoPE)

  • ALiBi

  • Relative Position Encodings

  • 3.2 Language Model Architectures

  • Week 2: Modern LLMs

  • GPT Family

  • GPT Architecture Evolution

  • GPT-3/3.5 Capabilities

  • GPT-4 Multimodal Features

  • ChatGPT Training Process

  • InstructGPT and RLHF

  • Open Source Models

  • LLaMA/LLaMA 2 Architecture

  • Mistral and Mixtral

  • Falcon Models

  • MPT (MosaicML)

  • Qwen and Yi Models

  • Specialized Architectures

  • Encoder-Only (BERT, RoBERTa)

  • Encoder-Decoder (T5, BART)

  • Retrieval-Augmented Models

  • Mixture of Experts (MoE)

  • Sparse Models

  • Scaling Laws

  • Chinchilla Scaling

  • Compute-Optimal Training

  • Model Size vs. Data Size

  • Emergent Abilities

  • Efficiency Considerations

  • 3.3 Training Large Language Models

  • Week 3: Pre-training and Fine-tuning

  • Pre-training Objectives

  • Causal Language Modeling

  • Masked Language Modeling

  • Span Corruption

  • Prefix Language Modeling

  • UL2 Framework

  • Training Infrastructure

  • Distributed Training (DDP, FSDP)

  • Mixed Precision Training

  • Gradient Checkpointing

  • ZeRO Optimization

  • Pipeline Parallelism

  • Fine-tuning Techniques

  • Full Fine-tuning

  • LoRA and QLoRA

  • Prefix Tuning

  • Adapter Layers

  • Prompt Tuning

  • Instruction Tuning

  • Dataset Creation

  • Constitutional AI

  • RLHF Pipeline

  • DPO (Direct Preference Optimization)

  • RLAIF

  • Project: Fine-tune an LLM for a specific domain application

Module 2

    Topics:

  • Duration: 2 Weeks

  • 4.1 Advanced Prompt Engineering

  • Week 1: Prompting Techniques

  • Basic Techniques

  • Zero-Shot Prompting

  • Few-Shot Learning

  • Role-Based Prompting

  • Instruction Following

  • Format Control

  • Advanced Strategies

  • Chain-of-Thought (CoT)

  • Tree-of-Thoughts (ToT)

  • Self-Consistency

  • ReAct Framework

  • Decomposition Strategies

  • Prompt Optimization

  • Automatic Prompt Engineering

  • Prompt Templates

  • Meta-Prompting

  • Prompt Chaining

  • Dynamic Prompting

  • Context Management

  • Context Window Optimization

  • Information Compression

  • Relevant Context Selection

  • Long Context Handling

  • Memory Systems

  • 4.2 LLM Applications

  • Week 2: Building with LLMs

  • Text Generation Applications

  • Creative Writing

  • Content Generation

  • Summarization

  • Translation

  • Paraphrasing

  • Conversational AI

  • Chatbot Development

  • Dialogue Management

  • Personality Design

  • Context Tracking

  • Multi-turn Conversations

  • Knowledge Applications

  • Question Answering

  • Information Extraction

  • Fact Checking

  • Knowledge Base Construction

  • Research Assistance

  • Code Generation

  • Code Completion

  • Bug Fixing

  • Code Explanation

  • Documentation Generation

  • Test Generation

  • Lab

  • Build a production-ready LLM application with advanced prompting

Module 3

    Topics:

  • Duration: 2 Weeks

  • 5.1 RAG Architecture

  • Week 1: Core Components

  • Document Processing

  • Text Extraction

  • Chunking Strategies

  • Metadata Extraction

  • Document Parsing

  • OCR Integration

  • Embedding Models

  • Sentence Transformers

  • OpenAI Embeddings

  • Instructor Models

  • Custom Embeddings

  • Multilingual Embeddings

  • Vector Databases

  • Pinecone

  • Weaviate

  • Qdrant

  • ChromaDB

  • FAISS

  • Retrieval Strategies

  • Dense Retrieval

  • Sparse Retrieval

  • Hybrid Search

  • Re-ranking

  • Query Expansion

  • 5.2 Advanced RAG Techniques

  • Week 2: Optimization and Deployment

  • RAG Patterns

  • Simple RAG

  • Advanced RAG

  • Modular RAG

  • Graph RAG

  • Multi-Modal RAG

  • Optimization Techniques

  • Chunking Optimization

  • Embedding Fine-tuning

  • Index Optimization

  • Caching Strategies

  • Compression Methods

  • Quality Improvement

  • Relevance Scoring

  • Answer Generation

  • Citation Addition

  • Fact Verification

  • Hallucination Reduction

  • Production RAG

  • Scalability Considerations

  • Update Strategies

  • Monitoring and Logging

  • A/B Testing

  • Performance Metrics

  • Project

  • Build an enterprise RAG system with advanced features

IMAGE AND VISION GENERATION
Module 1

    Topics:

  • Duration: 2 Weeks

  • 6.1 Diffusion Model Theory

  • Week 1: Fundamentals

  • Diffusion Process

  • Forward Diffusion

  • Reverse Diffusion

  • Noise Schedules

  • Sampling Algorithms

  • Score-Based Formulation

  • DDPM and Improvements

  • Denoising Diffusion Probabilistic Models

  • DDIM (Deterministic Sampling)

  • Improved DDPM

  • Variance Learning

  • Progressive Distillation

  • Conditional Generation

  • Classifier Guidance

  • Classifier-Free Guidance

  • Text Conditioning

  • Image Conditioning

  • Multi-Modal Conditioning

  • Latent Diffusion Models

  • VAE Encoder/Decoder

  • Latent Space Diffusion

  • Stable Diffusion Architecture

  • Memory Efficiency

  • Quality vs. Speed Trade-offs

  • 6.2 Stable Diffusion and Applications

  • Week 2: Practical Implementation

  • Stable Diffusion Deep Dive

  • U-Net Architecture

  • CLIP Text Encoder

  • VAE Components

  • Attention Mechanisms

  • Cross-Attention Layers

  • Control Methods

  • ControlNet

  • IP-Adapter

  • T2I-Adapter

  • LoRA for Stable Diffusion

  • Textual Inversion

  • Advanced Techniques

  • Inpainting

  • Outpainting

  • Image-to-Image

  • Style Transfer

  • Super Resolution

  • Custom Model Training

  • DreamBooth

  • Fine-tuning Strategies

  • Dataset Preparation

  • Training Optimization

  • Model Merging

  • Lab: Train and deploy custom Stable Diffusion models

Module 2

    Topics:

  • Duration: 2 Weeks

  • 7.1 GAN-Based Image Generation

  • Week 1: StyleGAN and Beyond

  • StyleGAN Architecture

  • Style-Based Generator

  • Adaptive Instance Normalization

  • Mapping Network

  • Synthesis Network

  • Perceptual Path Length

  • StyleGAN Variants

  • StyleGAN2 Improvements

  • StyleGAN3 (Alias-Free)

  • StyleGAN-XL

  • StyleGAN-T

  • StyleGAN-Human

  • Applications

  • Face Generation

  • Art Creation

  • Fashion Design

  • Architecture Visualization

  • Medical Imaging

  • Editing and Manipulation

  • Latent Space Exploration

  • StyleCLIP

  • GANSpace

  • InterFaceGAN

  • Semantic Editing

  • 7.2 Specialized Image Models

  • Week 2: Domain-Specific Generation

  • Text-to-Image Models

  • DALL-E 2/3

  • Midjourney Architecture

  • Imagen

  • Parti

  • eDiff-I

  • 3D Generation

  • NeRF (Neural Radiance Fields)

  • 3D GANs

  • Point-E

  • Shap-E

  • DreamFusion

  • Video Generation

  • Video Diffusion Models

  • Make-A-Video

  • Imagen Video

  • Phenaki

  • Gen-2

  • Image Editing Models

  • InstructPix2Pix

  • Imagic

  • Prompt-to-Prompt

  • DiffEdit

  • MagicBrush

  • Project

  • Build a complete image generation pipeline with editing capabilities

MULTIMODAL AND SPECIALIZED GENERATION
Module 1

    Topics:

  • Duration: 1 Week

  • 8.1 Audio Generation Models

  • Speech Synthesis

  • Text-to-Speech Models

  • WaveNet

  • Tacotron

  • FastSpeech

  • VALL-E

  • Voice Cloning

  • Voice Conversion

  • Few-Shot Voice Cloning

  • Emotional TTS

  • Multi-Speaker Models

  • Real-Time Systems

  • Music Generation

  • MusicLM

  • AudioLM

  • Riffusion

  • MusicGen

  • MIDI Generation

  • 8.2 Audio Applications

  • Sound Design

  • Sound Effects Generation

  • Foley Automation

  • Ambient Soundscapes

  • Audio Restoration

  • Noise Reduction

  • Production Tools

  • Mixing and Mastering AI

  • Style Transfer

  • Source Separation

  • Audio Enhancement

  • Real-time Processing

  • Lab

  • Create an AI music generation application

Module 2

    Topics:

  • Duration: 2 Weeks

  • 9.1 Code Generation Models

  • Week 1: Architecture and Training

  • Code-Specific LLMs

  • Codex/GitHub Copilot

  • Code Llama

  • StarCoder

  • DeepSeek Coder

  • WizardCoder

  • Training Techniques

  • Code Pre-training

  • Fill-in-the-Middle

  • Instruction Tuning for Code

  • Multi-Language Training

  • Test-Driven Generation

  • Code Understanding

  • Abstract Syntax Trees

  • Code Embeddings

  • Semantic Analysis

  • Bug Detection

  • Code Review

  • Specialized Tasks

  • Code Completion

  • Code Translation

  • Refactoring

  • Documentation

  • Test Generation

  • 9.2 AI-Assisted Development

  • Week 2: Practical Applications

  • IDE Integration

  • Copilot Integration

  • Custom Extensions

  • Real-time Suggestions

  • Context Management

  • Multi-file Understanding

  • Development Workflows

  • Pair Programming with AI

  • Code Review Automation

  • Debugging Assistance

  • Performance Optimization

  • Security Analysis

  • Advanced Applications

  • Program Synthesis

  • Automatic Repair

  • Code Search

  • API Generation

  • Migration Tools

  • Quality and Testing

  • Code Quality Metrics

  • Test Coverage

  • Security Scanning

  • Performance Profiling

  • Best Practices

  • Project

  • Build an AI-powered development assistant

Module 3

    Topics:

  • Duration: 2 Weeks

  • 10.1 Vision-Language Models

  • Week 1: Architecture and Training

  • Multimodal Architectures

  • CLIP and Variants

  • ALIGN

  • BLIP/BLIP-2

  • Flamingo

  • LLaVA

  • Training Objectives

  • Contrastive Learning

  • Image-Text Matching

  • Masked Modeling

  • Generative Objectives

  • Cross-Modal Alignment

  • Applications

  • Image Captioning

  • Visual Question Answering

  • Image Search

  • Zero-Shot Classification

  • Visual Reasoning

  • Video Understanding

  • Video-Language Models

  • Action Recognition

  • Video Captioning

  • Temporal Reasoning

  • Video Search

  • 10.2 Advanced Multimodal Systems

  • Week 2: Complex Applications

  • Any-to-Any Generation

  • Unified Models

  • CoDi

  • ImageBind

  • NExT-GPT

  • Composable Diffusion

  • Multimodal Agents

  • Visual Agents

  • Embodied AI

  • Robotics Integration

  • AR/VR Applications

  • Interactive Systems

  • Cross-Modal Generation

  • Text-to-3D

  • Audio-to-Image

  • Image-to-Music

  • Cross-Modal Retrieval

  • Style Transfer

  • Production Systems

  • Multimodal RAG

  • Content Moderation

  • Accessibility Tools

  • Translation Systems

  • Creative Tools

  • Lab: Build a multimodal AI application

PRODUCTION GENAI SYSTEMS
Module 1

    Topics:

  • Duration: 2 Weeks

  • 11.1 Model Optimization

  • Week 1: Performance Optimization

  • Quantization Techniques

  • INT8 Quantization

  • INT4 and Below

  • Mixed Precision

  • Dynamic Quantization

  • Quantization-Aware Training

  • Model Compression

  • Knowledge Distillation

  • Pruning Strategies

  • Layer Reduction

  • Token Merging

  • Attention Optimization

  • Inference Optimization

  • Flash Attention

  • KV Cache Optimization

  • Batch Processing

  • Streaming Generation

  • Speculative Decoding

  • Hardware Acceleration

  • GPU Optimization

  • TPU Deployment

  • ONNX Runtime

  • TensorRT

  • Mobile Deployment

  • 11.2 Production Deployment

  • Week 2: Scalable Systems

  • Serving Infrastructure

  • Model Serving Frameworks

  • Load Balancing

  • Auto-scaling

  • Caching Strategies

  • CDN Integration

  • API Development

  • RESTful APIs

  • GraphQL

  • WebSocket Support

  • Streaming Responses

  • Rate Limiting

  • Monitoring and Observability

  • Performance Metrics

  • Quality Monitoring

  • Cost Tracking

  • Error Handling

  • A/B Testing

  • Edge Deployment

  • Mobile Deployment

  • Browser-Based AI

  • IoT Devices

  • Offline Capabilities

  • Privacy-Preserving AI

  • Project

  • Deploy a production GenAI system with monitoring

Module 2

    Topics:

  • Duration: 1 Week

  • 12.1 Ethical Considerations

  • Bias and Fairness

  • Bias Detection

  • Fairness Metrics

  • Debiasing Techniques

  • Inclusive Design

  • Representation Issues

  • Safety Measures

  • Content Filtering

  • Safety Classifiers

  • Prompt Injection Defense

  • Output Validation

  • Use Case Restrictions

  • Privacy and Security

  • Data Privacy

  • Model Security

  • Adversarial Robustness

  • Watermarking

  • Attribution

  • 12.2 Responsible AI

  • Governance Framework

  • Ethics Guidelines

  • Compliance Requirements

  • Risk Assessment

  • Audit Trails

  • Documentation

  • Transparency

  • Model Cards

  • Explainability

  • Uncertainty Quantification

  • Limitation Disclosure

  • User Education

  • Lab

  • Implement safety measures for GenAI applications

Module 3

    Topics:

  • Duration: 1 Week

  • 13.1 Enterprise GenAI

  • Use Case Identification

  • Opportunity Assessment

  • ROI Calculation

  • Risk Analysis

  • Pilot Planning

  • Success Metrics

  • Implementation Strategy

  • Build vs. Buy

  • Vendor Selection

  • Integration Planning

  • Change Management

  • Training Programs

  • Industry Applications

  • Healthcare and Life Sciences

  • Financial Services

  • Retail and E-commerce

  • Media and Entertainment

  • Education

  • 13.2 GenAI Products

  • Product Development

  • Market Research

  • Product Design

  • User Experience

  • Pricing Strategy

  • Go-to-Market

  • Business Models

  • SaaS Offerings

  • API Services

  • Consulting Services

  • Custom Solutions

  • Marketplace Models

  • Project

  • Develop a GenAI business case and implementation plan

TOOlS & PLATFORMS

LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid
LogoGrid

Our Trending Projects

Autonomous Customer Service System

Build a complete multi-agent customer service system with: - Natural language understanding - Intent recognition and routing - Knowledge base integration - Escalation handling - Sentiment analysis - Performance monitoring

Autonomous Customer Service System

Intelligent Research Assistant

Develop an AI research agent capable of: - Literature review automation - Data collection and analysis - Report generation - Citation management - Collaborative research - Quality validation

Intelligent Research Assistant

Enterprise Process Automation

Create an agent system for business process automation: - Workflow orchestration - Document processing - Decision automation - Integration with enterprise systems - Compliance checking - Performance optimization

Enterprise Process Automation

IT Engineers who got Trained from Digital Lync

Engineers all around the world reach for Digital Lync by choice.

Why Digital Lync

100000+

LEARNERS

10000+

BATCHES

10+

YEARS

24/7

SUPPORT

Learn.

Build.

Get Job.

100000+ uplifted through our hybrid classroom & online training, enriched by real-time projects and job support.

Our Locations

Come and chat with us about your goals over a cup of coffee.

Hyderabad, Telangana

2nd Floor, Hitech City Rd, Above Domino's, opp. Cyber Towers, Jai Hind Enclave, Hyderabad, Telangana.

Bengaluru, Karnataka

3rd Floor, Site No 1&2 Saroj Square, Whitefield Main Road, Munnekollal Village Post, Marathahalli, Bengaluru, Karnataka.